Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS One ; 18(2): e0282330, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2265939

RESUMEN

Perinatal distress affects approximately 10% of fathers, but little is known about how gay fathers experience the challenges surrounding childbirth and early parenting of a child. This study explored gay fathers' experiences of having a baby via transnational surrogacy, raising that baby as a gay parent, and the context of the COVID-19 pandemic. In-depth qualitative interviews were conducted with 15 Israeli men to understand their experiences of surrogacy and early parenthood, focusing on the impact on their mental health and the relational factors involved. Secondary narrative analysis revealed that fathers constructed surrogacy as a perilous quest that required strong intentionality to undertake. The first year of parenthood was conceptualised alternately as a joyful experience and/or one that challenged fathers' identities and mental health. A relational framework was applied to better conceptualise the fathers' narratives, revealing that actual connections-and the potentials for links-considerably shaped experiences of surrogacy, perinatal distress and recovery. Implications for research and policy are discussed.


Asunto(s)
COVID-19 , Minorías Sexuales y de Género , Masculino , Embarazo , Lactante , Niño , Femenino , Humanos , Padre/psicología , Salud Mental , Israel , Pandemias , Madres Sustitutas/psicología , Responsabilidad Parental/psicología
2.
J Neuroimmunol ; 370: 577928, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2265938

RESUMEN

BACKGROUND: Various vaccines, tumor-necrosis-factor-alpha inhibitors (TNFAIs), immune-checkpoint inhibitors (ICIs), and other immunomodulators have been linked to inflammatory CNS events. The prevalence of iatrogenic events in the neuroimmunology clinic is unknown. OBJECTIVE: To evaluate the prevalence and clinical characteristics of iatrogenic CNS inflammation in a tertiary neuroimmunology clinic. METHODS: We analyzed 422 consecutive patients seen over five years at a tertiary neuroimmunology clinic who were systematically screened for exposure to vaccines, TNFAIs, ICIs, or other immunomodulators. In patients with suspected iatrogenic events, the Naranjo Adverse Drug Reaction Probability Scale was used to score the probability of iatrogenicity. RESULTS: In total, 27 potential iatrogenic events were observed, accounting for 6.4% of all new referrals. The average Naranjo score was 5.78 +/- 1.65 with 74% of the cases scored as probable and 26% scored as possible. The clinical phenotypes included MS relapses (37%); autoimmune encephalitis (30%); NMOSD attacks (15%); transverse myelitis (11%); optic neuritis (4%); and MOGAD attacks (4%). A monophasic course was observed in 44% of cases while 41% had a relapsing course. All patients stopped or interrupted treatment with the offending agent. In addition, 41% of the iatrogenic events were fully responsive to corticosteroids; 22% were partially responsive; and 15% resolved spontaneously. The most common potential triggers were vaccines (37%) followed by TNFAIs (33%) then ICIs (26%). A significantly higher number of probable iatrogenic events were observed among the ICI and vaccine groups compared to a higher number of possible events among the TNFAI group. The latter group also had a significantly longer interval since exposure. The ICI group was more likely to present with monophasic autoimmune encephalitis. CONCLUSION: Iatrogenic CNS inflammation is rare and typically involves steroid-responsive monophasic events. A subset of iatrogenic events can unmask or worsen relapsing disorders. The probability of iatrogenicity was higher in vaccine and ICI-related events compared to TNFAI-related events.


Asunto(s)
Encefalitis , Neuromielitis Óptica , Autoanticuerpos/uso terapéutico , Encefalitis/inducido químicamente , Encefalitis/epidemiología , Enfermedad de Hashimoto , Humanos , Enfermedad Iatrogénica/epidemiología , Factores Inmunológicos/uso terapéutico , Inflamación/epidemiología , Prevalencia
3.
ACS Nano ; 16(8): 11769-11780, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1908087

RESUMEN

Humans commonly have low level antibodies to poly(ethylene) glycol (PEG) due to environmental exposure. Lipid nanoparticle (LNP) mRNA vaccines for SARS-CoV-2 contain small amounts of PEG, but it is not known whether PEG antibodies are enhanced by vaccination and what their impact is on particle-immune cell interactions in human blood. We studied plasma from 130 adults receiving either the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) mRNA vaccines or no SARS-CoV-2 vaccine for PEG-specific antibodies. Anti-PEG IgG was commonly detected prior to vaccination and was significantly boosted a mean of 13.1-fold (range 1.0-70.9) following mRNA-1273 vaccination and a mean of 1.78-fold (range 0.68-16.6) following BNT162b2 vaccination. Anti-PEG IgM increased 68.5-fold (range 0.9-377.1) and 2.64-fold (0.76-12.84) following mRNA-1273 and BNT162b2 vaccination, respectively. The rise in PEG-specific antibodies following mRNA-1273 vaccination was associated with a significant increase in the association of clinically relevant PEGylated LNPs with blood phagocytes ex vivo. PEG antibodies did not impact the SARS-CoV-2 specific neutralizing antibody response to vaccination. However, the elevated levels of vaccine-induced anti-PEG antibodies correlated with increased systemic reactogenicity following two doses of vaccination. We conclude that PEG-specific antibodies can be boosted by LNP mRNA vaccination and that the rise in PEG-specific antibodies is associated with systemic reactogenicity and an increase of PEG particle-leukocyte association in human blood. The longer-term clinical impact of the increase in PEG-specific antibodies induced by lipid nanoparticle mRNA vaccines should be monitored. It may be useful to identify suitable alternatives to PEG for developing next-generation LNP vaccines to overcome PEG immunogenicity in the future.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Vacuna BNT162 , SARS-CoV-2 , COVID-19/prevención & control , Polietilenglicoles , Anticuerpos , Vacunación , Anticuerpos Antivirales , Anticuerpos Neutralizantes
4.
J Immunol ; 208(10): 2267-2271, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1835021

RESUMEN

Understanding the generation of immunity to SARS-CoV-2 in lymphoid tissues draining the site of infection has implications for immunity to SARS-CoV-2. We performed tonsil biopsies under local anesthesia in 19 subjects who had recovered from SARS-CoV-2 infection 24-225 d previously. The biopsies yielded >3 million cells for flow cytometric analysis in 17 subjects. Total and SARS-CoV-2 spike-specific germinal center B cells, and T follicular helper cells, were readily detectable in human tonsils early after SARS-CoV-2 infection, as assessed by flow cytometry. Responses were higher in samples within 2 mo of infection but still detectable in some subjects out to 7 mo following infection. We conclude the tonsils are a secondary lymphoid organ that develop germinal center responses to SARS-CoV-2 infection and could play a role in the long-term development of immunity.


Asunto(s)
COVID-19 , Anticuerpos Antivirales , Centro Germinal , Humanos , Tonsila Palatina , SARS-CoV-2 , Células T Auxiliares Foliculares
5.
EBioMedicine ; 74: 103699, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1520831

RESUMEN

COVID-19 has become a major cause of global mortality and driven massive health and economic disruptions. Mass global vaccination offers the most efficient pathway towards ending the pandemic. The development and deployment of first-generation COVID-19 vaccines, encompassing mRNA or viral vectors, has proceeded at a phenomenal pace. Going forward, nanoparticle-based vaccines which deliver SARS-CoV-2 antigens will play an increasing role in extending or improving vaccination outcomes against COVID-19. At present, over 26 nanoparticle vaccine candidates have advanced into clinical testing, with ∼60 more in pre-clinical development. Here, we discuss the emerging promise of nanotechnology in vaccine design and manufacturing to combat SARS-CoV-2, and highlight opportunities and challenges presented by these novel vaccine platforms.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal/inmunología , Liposomas/farmacología , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Humanos , Nanopartículas , Pandemias/prevención & control , Desarrollo de Vacunas/métodos
6.
Cell Rep ; 37(2): 109822, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1433046

RESUMEN

Potent neutralizing monoclonal antibodies are one of the few agents currently available to treat COVID-19. SARS-CoV-2 variants of concern (VOCs) that carry multiple mutations in the viral spike protein can exhibit neutralization resistance, potentially affecting the effectiveness of some antibody-based therapeutics. Here, the generation of a diverse panel of 91 human, neutralizing monoclonal antibodies provides an in-depth structural and phenotypic definition of receptor binding domain (RBD) antigenic sites on the viral spike. These RBD antibodies ameliorate SARS-CoV-2 infection in mice and hamster models in a dose-dependent manner and in proportion to in vitro, neutralizing potency. Assessing the effect of mutations in the spike protein on antibody recognition and neutralization highlights both potent single antibodies and stereotypic classes of antibodies that are unaffected by currently circulating VOCs, such as B.1.351 and P.1. These neutralizing monoclonal antibodies and others that bind analogous epitopes represent potentially useful future anti-SARS-CoV-2 therapeutics.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Neutralizantes/inmunología , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/ultraestructura , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Neutralizantes/ultraestructura , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Cricetinae , Microscopía por Crioelectrón/métodos , Epítopos/inmunología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Pruebas de Neutralización , Unión Proteica/fisiología , Receptores Virales/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
7.
Adv Healthc Mater ; 10(10): e2002142, 2021 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1384090

RESUMEN

Despite remarkable successes of immunization in protecting public health, safe and effective vaccines against a number of life-threatening pathogens such as HIV, ebola, influenza, and SARS-CoV-2 remain urgently needed. Subunit vaccines can avoid potential toxicity associated with traditional whole virion-inactivated and live-attenuated vaccines; however, the immunogenicity of subunit vaccines is often poor. A facile method is here reported to produce lipid nanoparticle subunit vaccines that exhibit high immunogenicity and elicit protection against influenza virus. Influenza hemagglutinin (HA) immunogens are functionalized on the surface of liposomes via stable metal chelation chemistry, using a scalable advanced microfluidic mixing technology (NanoAssemblr). Immunization of mice with HA-liposomes elicits increased serum antibody titers and superior protection against highly pathogenic virus challenge compared with free HA protein. HA-liposomal vaccines display enhanced antigen deposition into germinal centers within the draining lymph nodes, driving increased HA-specific B cell, and follicular helper T cell responses. This work provides mechanistic insights into highly protective HA-liposome vaccines and informs the rational design and rapid production of next generation nanoparticle subunit vaccines.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Animales , Anticuerpos Antivirales , Centro Germinal , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas , Humanos , Liposomas , Ratones , Infecciones por Orthomyxoviridae/prevención & control , SARS-CoV-2 , Linfocitos T Colaboradores-Inductores
8.
Cell Rep Med ; 2(6): 100296, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1225428

RESUMEN

The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies.


Asunto(s)
Anticuerpos Antivirales/metabolismo , COVID-19/inmunología , Fragmentos Fc de Inmunoglobulinas/metabolismo , Anticuerpos Antivirales/sangre , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , COVID-19/patología , COVID-19/virología , Línea Celular Tumoral , Dimerización , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/inmunología , Cinética , Pruebas de Neutralización , Fagocitosis , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
9.
J Neuroimmunol ; 356: 577599, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1213381

RESUMEN

COVID-19 vaccination is recommended for multiple sclerosis patients. Disease-modifying therapies can influence the safety and efficacy of COVID-19 vaccines. RNA, DNA, protein, and inactivated vaccines are likely safe for multiple sclerosis patients. A few incidences of central demyelination were reported with viral vector vaccines, but their benefits likely outweigh their risks if alternatives are unavailable. Live-attenuated vaccines should be avoided whenever possible in treated patients. Interferon-beta, glatiramer acetate, teriflunomide, fumarates, and natalizumab are not expected to impact vaccine efficacy, while cell-depleting agents (ocrelizumab, rituximab, ofatumumab, alemtuzumab, and cladribine) and sphingosine-1-phosphate modulators will likely attenuate vaccine responses. Coordinating vaccine timing with dosing regimens for some therapies may optimize vaccine efficacy.


Asunto(s)
Vacunas contra la COVID-19/uso terapéutico , COVID-19/prevención & control , Huésped Inmunocomprometido/efectos de los fármacos , Esclerosis Múltiple/inmunología , Antirreumáticos/uso terapéutico , COVID-19/complicaciones , Humanos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/tratamiento farmacológico , SARS-CoV-2
10.
Nat Commun ; 12(1): 2037, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1164849

RESUMEN

The hallmarks of COVID-19 are higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive immunological responses, induced by circulating human coronaviruses (hCoVs), is needed to understand such divergent clinical outcomes. Here we show analysis of coronavirus antibody responses of pre-pandemic healthy children (n = 89), adults (n = 98), elderly (n = 57), and COVID-19 patients (n = 50) by systems serology. Moderate levels of cross-reactive, but non-neutralizing, SARS-CoV-2 antibodies are detected in pre-pandemic healthy individuals. SARS-CoV-2 antigen-specific Fcγ receptor binding accurately distinguishes COVID-19 patients from healthy individuals, suggesting that SARS-CoV-2 infection induces qualitative changes to antibody Fc, enhancing Fcγ receptor engagement. Higher cross-reactive SARS-CoV-2 IgA and IgG are observed in healthy elderly, while healthy children display elevated SARS-CoV-2 IgM, suggesting that children have fewer hCoV exposures, resulting in less-experienced but more polyreactive humoral immunity. Age-dependent analysis of COVID-19 patients, confirms elevated class-switched antibodies in elderly, while children have stronger Fc responses which we demonstrate are functionally different. These insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.


Asunto(s)
Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Niño , Preescolar , Reacciones Cruzadas/inmunología , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Persona de Mediana Edad , Receptores de IgG/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
11.
Clin Transl Immunology ; 10(3): e1264, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1144232

RESUMEN

OBJECTIVES: Endemic human coronaviruses (hCoVs) circulate worldwide but cause minimal mortality. Although seroconversion to hCoV is near ubiquitous during childhood, little is known about hCoV-specific T-cell memory in adults. METHODS: We quantified CD4 T-cell and antibody responses to hCoV spike antigens in 42 SARS-CoV-2-uninfected individuals. Antigen-specific memory T cells and circulating T follicular helper (cTFH) cells were identified using an activation-induced marker assay and characterised for memory phenotype and chemokine receptor expression. RESULTS: T-cell responses were widespread within conventional memory and cTFH compartments but did not correlate with IgG titres. SARS-CoV-2 cross-reactive T cells were observed in 48% of participants and correlated with HKU1 memory. hCoV-specific T cells exhibited a CCR6+ central memory phenotype in the blood, but were enriched for frequency and CXCR3 expression in human lung-draining lymph nodes. CONCLUSION: Overall, hCoV-specific humoral and cellular memory are independently maintained, with a shared phenotype existing among coronavirus-specific CD4 T cells. This understanding of endemic coronavirus immunity provides insight into the homeostatic maintenance of immune responses that are likely to be critical components of protection against SARS-CoV-2.

12.
Nat Commun ; 12(1): 1403, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1117351

RESUMEN

SARS-CoV-2 vaccines are advancing into human clinical trials, with emphasis on eliciting high titres of neutralising antibodies against the viral spike (S). However, the merits of broadly targeting S versus focusing antibody onto the smaller receptor binding domain (RBD) are unclear. Here we assess prototypic S and RBD subunit vaccines in homologous or heterologous prime-boost regimens in mice and non-human primates. We find S is highly immunogenic in mice, while the comparatively poor immunogenicity of RBD is associated with limiting germinal centre and T follicular helper cell activity. Boosting S-primed mice with either S or RBD significantly augments neutralising titres, with RBD-focussing driving moderate improvement in serum neutralisation. In contrast, both S and RBD vaccines are comparably immunogenic in macaques, eliciting serological neutralising activity that generally exceed levels in convalescent humans. These studies confirm recombinant S proteins as promising vaccine candidates and highlight multiple pathways to achieving potent serological neutralisation.


Asunto(s)
Vacunas contra la COVID-19/uso terapéutico , SARS-CoV-2/patogenicidad , Animales , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos/fisiología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Macaca , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Vacunas Virales/uso terapéutico
13.
Nat Commun ; 12(1): 1162, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1091489

RESUMEN

The durability of infection-induced SARS-CoV-2 immunity has major implications for reinfection and vaccine development. Here, we show a comprehensive profile of antibody, B cell and T cell dynamics over time in a cohort of patients who have recovered from mild-moderate COVID-19. Binding and neutralising antibody responses, together with individual serum clonotypes, decay over the first 4 months post-infection. A similar decline in Spike-specific CD4+ and circulating T follicular helper frequencies occurs. By contrast, S-specific IgG+ memory B cells consistently accumulate over time, eventually comprising a substantial fraction of circulating the memory B cell pool. Modelling of the concomitant immune kinetics predicts maintenance of serological neutralising activity above a titre of 1:40 in 50% of convalescent participants to 74 days, although there is probably additive protection from B cell and T cell immunity. This study indicates that SARS-CoV-2 immunity after infection might be transiently protective at a population level. Therefore, SARS-CoV-2 vaccines might require greater immunogenicity and durability than natural infection to drive long-term protection.


Asunto(s)
Anticuerpos Antivirales/inmunología , Formación de Anticuerpos , COVID-19/inmunología , Inmunidad Celular , Memoria Inmunológica , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Humanos , Inmunoglobulina G/inmunología , Estudios Longitudinales , Modelos Teóricos , Pruebas de Neutralización , Linfocitos T Colaboradores-Inductores/inmunología
14.
Sci Rep ; 11(1): 1864, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1042540

RESUMEN

The ferret is a key animal model for investigating the pathogenicity and transmissibility of important human viruses, and for the pre-clinical assessment of vaccines. However, relatively little is known about the ferret immune system, due in part to a paucity of ferret-reactive reagents. In particular, T follicular helper (Tfh) cells are critical in the generation of effective humoral responses in humans, mice and other animal models but to date it has not been possible to identify Tfh in ferrets. Here, we describe the screening and development of ferret-reactive BCL6, CXCR5 and PD-1 monoclonal antibodies. We found two commercial anti-BCL6 antibodies (clone K112-91 and clone IG191E/A8) had cross-reactivity with lymph node cells from influenza-infected ferrets. We next developed two murine monoclonal antibodies against ferret CXCR5 (clone feX5-C05) and PD-1 (clone fePD-CL1) using a single B cell PCR-based method. We were able to clearly identify Tfh cells in lymph nodes from influenza infected ferrets using these antibodies. The development of ferret Tfh marker antibodies and the identification of ferret Tfh cells will assist the evaluation of vaccine-induced Tfh responses in the ferret model and the design of novel vaccines against the infection of influenza and other viruses, including SARS-CoV2.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Hurones/inmunología , Ensayos Analíticos de Alto Rendimiento/métodos , Células T Auxiliares Foliculares/inmunología , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Vacunas contra la COVID-19/inmunología , Reacciones Cruzadas/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Ganglios Linfáticos/inmunología , Ratones , Receptor de Muerte Celular Programada 1/inmunología , Proteínas Proto-Oncogénicas c-bcl-6/inmunología , Receptores CXCR5/inmunología , Vacunas Virales/inmunología
15.
ACS Nano ; 14(11): 15723-15737, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: covidwho-899872

RESUMEN

When nanoparticles interact with human blood, a multitude of plasma components adsorb onto the surface of the nanoparticles, forming a biomolecular corona. Corona composition is known to be influenced by the chemical composition of nanoparticles. In contrast, the possible effects of variations in the human blood proteome between healthy individuals on the formation of the corona and its subsequent interactions with immune cells in blood are unknown. Herein, we prepared and examined a matrix of 11 particles (including organic and inorganic particles of three sizes and five surface chemistries) and plasma samples from 23 healthy donors to form donor-specific biomolecular coronas (personalized coronas) and investigated the impact of the personalized coronas on particle interactions with immune cells in human blood. Among the particles examined, poly(ethylene glycol) (PEG)-coated mesoporous silica (MS) particles, irrespective of particle size (800, 450, or 100 nm in diameter), displayed the widest range (up to 60-fold difference) of donor-dependent variance in immune cell association. In contrast, PEG particles (after MS core removal) of 860, 518, or 133 nm in diameter displayed consistent stealth behavior (negligible cell association), irrespective of plasma donor. For comparison, clinically relevant PEGylated doxorubicin-encapsulated liposomes (Doxil) (74 nm in diameter) showed significant variance in association with monocytes and B cells across all plasma donors studied. An in-depth proteomic analysis of each biomolecular corona studied was performed, and the results were compared against the nanoparticle-blood cell association results, with individual variance in the proteome driving differential association with specific immune cell types. We identified key immunoglobulin and complement proteins that explicitly enriched or depleted within the corona and which strongly correlated with the cell association pattern observed across the 23 donors. This study demonstrates how plasma variance in healthy individuals significantly influences the blood immune cell interactions of nanoparticles.


Asunto(s)
Nanopartículas , Corona de Proteínas , Proteínas Sanguíneas , Humanos , Tamaño de la Partícula , Proteómica , Dióxido de Silicio
16.
Nat Med ; 26(9): 1428-1434, 2020 09.
Artículo en Inglés | MEDLINE | ID: covidwho-641392

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has dramatically expedited global vaccine development efforts1-3, most targeting the viral 'spike' glycoprotein (S). S localizes on the virion surface and mediates recognition of cellular receptor angiotensin-converting enzyme 2 (ACE2)4-6. Eliciting neutralizing antibodies that block S-ACE2 interaction7-9, or indirectly prevent membrane fusion10, constitute an attractive modality for vaccine-elicited protection11. However, although prototypic S-based vaccines show promise in animal models12-14, the immunogenic properties of S in humans are poorly resolved. In this study, we characterized humoral and circulating follicular helper T cell (cTFH) immunity against spike in recovered patients with coronavirus disease 2019 (COVID-19). We found that S-specific antibodies, memory B cells and cTFH are consistently elicited after SARS-CoV-2 infection, demarking robust humoral immunity and positively associated with plasma neutralizing activity. Comparatively low frequencies of B cells or cTFH specific for the receptor binding domain of S were elicited. Notably, the phenotype of S-specific cTFH differentiated subjects with potent neutralizing responses, providing a potential biomarker of potency for S-based vaccines entering the clinic. Overall, although patients who recovered from COVID-19 displayed multiple hallmarks of effective immune recognition of S, the wide spectrum of neutralizing activity observed suggests that vaccines might require strategies to selectively target the most potent neutralizing epitopes.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Infecciones por Coronavirus/inmunología , Peptidil-Dipeptidasa A/genética , Neumonía Viral/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/farmacología , Antígenos Virales/inmunología , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Epítopos/inmunología , Humanos , Inmunidad Celular/inmunología , Pandemias , Peptidil-Dipeptidasa A/inmunología , Neumonía Viral/patología , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Linfocitos T Colaboradores-Inductores/inmunología , Células Vero/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA